Selasa, 03 Mei 2011

integral tertentu

Teorema dasar kalkulus menjelaskan relasi antara dua operasi pusat kalkulus, yaitu pendiferensialan (differentiation) dan pengintegralan (integration).
Bagian pertama dari teorema ini, kadang-kadang disebut sebagai teorema dasar kalkulus pertama, menunjukkan bahwa sebuah integral taktentu[1] dapat dibalikkan menggunakan pendiferensialan.
Bagian kedua, kadang-kadang disebut sebagai teorema dasar kalkulus kedua, mengijinkan seseorang menghitung integral tertentu sebuah fungsi menggunakan salah satu dari banyak antiturunan. Bagian teorema ini memiliki aplikasi yang sangat penting, karena ia dengan signifikan mempermudah perhitungan integral tertentu.
Penyataan yang pertama kali dipublikasikan dan bukti matematika dari versi terbatas teorema dasar ini diberikan oleh James Gregory (1638-1675)[2]. Isaac Barrow membuktikan versi umum bagian pertama teorema ini, sedangkan anak didik Barrow, Isaac Newton (1643-1727) menyelesaikan perkembangan dari teori matematika di sekitarnya. Gottfried Leibniz (1646–1716) mensistematisasi ilmu ini menjadi kalkulus untuk kuantitas infinitesimal.
Teorema dasar kalkulus kadang-kadang juga disebut sebagai Teorema dasar kalkulus Leibniz atau Teorema dasar kalkulus Torricelli-Barrow.

Daftar isi

[sembunyikan]

Tidak ada komentar:

Posting Komentar